
 

CMSC 201 Fall 2018  

Lab 12 – File I/O 

 

Assignment: Lab 12 – File I/O 

Due Date: During discussion, November 26th through November 29th 

Value: 10 points  

 

This week’s lab will put into practice the new concepts you learned about file 
input so far: open(), read(), split(), strip(), and more. 

 

(Having concepts explained in a new and different way can often lead to a 
better understanding, so make sure to pay attention as your TA explains.)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

CMSC 201 – Computer Science I for Majors Page 1 



 
 

Part 1A: Review – Opening Files 
 

Using files as input is a much quicker and easier way to get information from 
the user, especially for large amounts of data. Rather than having the user 
enter everything by hand, we can read in the data from a file. 

 

To open a file for reading, we use the following command: 
myInputFile = open("theFile.txt", "r") 

 

This line of code does three things: 
1. It opens the file  theFile.txt  
2. The file is opened for reading ("r") – as opposed to writing 

Writing would use a “w” instead  
If no second parameter is provided, the file is opened for reading  

3. The opened file is assigned to the variable  myInputFile 
 

 

Part 1B: Review – Reading Information from Files 
 

Once we have opened a file and assigned it to a variable, we can use that 
variable to access the file. There are three different ways to read in a file. 

 

1. Read the entire file in as one enormous string (including 
newlines) myInputFile.read()  

2. Read in a single line of the file 
myInputFile.readline() 

 

3. Read the file in as a list of strings (each line being a single string) 
myInputFile.readlines() 

 

Often, if we want to extract or examine data from a file, the last option (using 
a for loop to iterate over the list of the lines in the file) is the most obvious 

choice. 
 

On the next page, you can see an example where we read in from a file, 
printing only those lines that are exactly 36 characters long.  
 
 
 
 
 
 
 
 

 

CMSC 201 – Computer Science I for Majors Page 2 



 

In this code, we read in from a file, printing only those lines that are exactly 36 
characters long. 
 

inputFile = open("road.txt") # Frost's poem 

poem = inputFile.readlines() inputFile.close() 

for i in range(len(poem)): 

line = poem[i].strip() # remove the newline (and 

# any other whitespace) 
 

if len(line) == 36: # choose the lines to print 

print(line) 

 
 

 

When the file “road.txt” contains the poem “The Road not Taken” by Robert 
Frost, the output looks like this: 
 

Two roads diverged in a yellow wood, 

To where it bent in the undergrowth;  

And having perhaps the better claim, 

Though as for that the passing there 

Had worn them really about the same, 

In leaves no step had trodden black. 

Yet knowing how way leads on to way, 

Two roads diverged in a wood, and I— 

 
 

 

Part 1C (Review) – String Manipulation 
 

This is fine, but often we want to look at the contents of a line, and make a 
decision based on that, rather than on something trivial like the line length. 

 

For example, we may have a file that contains information about our 
employees and how many hours they worked this week. Using this 
information, we want to be able to determine which employees are full-time 
(work 30 hours or more) and which are part-time. 

 

If we know the format of the file we are reading in, we can take advantage of 
the split() function to assign each token in a line to individual variables. (A 

token is a set of characters – we don’t call it a “word” because it may be 
numbers, letters, whitespace, or a combination of any of the three.)  
 

 

CMSC 201 – Computer Science I for Majors Page 3 



 
 
 

If we take a look at the totalHours.txt file, 

we can see that each line is formatted the same: 
employee id, employee name, and the total 
hours worked that week. Since we know the 
format, we can directly assign each piece to a 
separate variable, and use those variables to 
help decide which employees are full-time.  

 
 
 
 

 

totalHours.txt 
 

123 Suzy 18.5 

456 Brad 35.0 

789 Jenn 39.5 

101 Thom 28.6 

 
 

One important thing to remember is that all of these variables will be strings to 
start off – so if we want to use them as integers or floats, we will need to first 
cast them to be that type. 

 

ifp = open("hours.txt") 

workerHours = ifp.readlines()  

for i in range(len(workerHours)): 
 

# directly assign each token to a variable 
workerInfo = workerHours[i].split() 

id = workerInfo[0] 

name = workerInfo[1] 

hours = workerInfo[2] 
 

# remember to cast to another type if needed 
if ( float(hours) >= 30):  

print(name, "is a full-time employee") 

else: 

print(name, "is a part-time worker") 

 

# don't forget to close the file!  

ifp.close() 

 

That code and the totalHours.txt file will give us the following output: 

 

Suzy is a part-time worker 

Brad is a full-time employee  

Jenn is a full-time employee 

Thom is a part-time worker 
 
 
 
 
 
 
 

 

CMSC 201 – Computer Science I for Majors Page 4 



 
 
 

By default, the split() function uses all whitespace (spaces, newlines, tabs, 

etc.) as the delimiter. The delimiter is the boundary between each token when 
the string is being split up. However, we can give it a specific character (or 
characters) to split on. Here’s an example from class: 

 

nonsense = "nutty otters making lattes" 

nonsense = nonsense.split("tt") 

print(nonsense)  

# which will output this list of strings: 
# ['nu', 'y o', 'ers making la', 'es'] 

 

This is a bit of a silly example — normally when we choose to split on 
something that isn't whitespace, we are instead using some other sort of 
separator character. Using commas, semicolons, and underscores are all 
common choices, as can be seen in the example code below: 

 

courseInfo = 

"CMSC_201_Fall_2016_Sec_01" infoList = 

courseInfo.split("_") print(infoList)  

# which will output this list of strings: 
# ['CMSC', '201', 'Fall', '2016', 'Sec', '01'] 

 
 

 

Part 1D (Review) – String Clean-Up 
 

When we use the split() function with no parameters, it splits on 

whitespace. This means that it automatically removes any trailing whitespace 
(like a newline character) from the end of the string; any leading whitespace is 
also removed from the start of the string. 

 

If we simply want to remove trailing and leading whitespace, and don’t need 
to use the split() function, we can use the strip() function instead. It 

removes all of the whitespace from the start and end of a single string, but 
leaves all of the interior whitespace intact.  
 
 
 
 
 
 
 

 

CMSC 201 – Computer Science I for Majors Page 5 



 
 
 

The code below shows the difference between the split() and strip() 

functions, and how they behave on a string. (We’ve printed out underscores 
on either side so you can “see” the exterior whitespace more easily.)  

 

ride = "\tMerry go\t round\n\n" 

print("Basic: _" + ride + "_") 

print("Stripped: _" + ride.strip() + "_") 

print("Split:", ride.split() ) 

 

This outputs: 
 

Basic: _ Merry go round 

 

_  

Stripped: _Merry go round_ 

Split: ['Merry', 'go', 'round'] 

 

Notice that the strip() function left the interior tab character alone, but that it 

removed the tab character from the front, and both of the newline characters 
from the end. The split() function split the string into tokens by removing 

the interior whitespace, but it also removed all of the leading and trailing 
whitespace as well.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

CMSC 201 – Computer Science I for Majors Page 6 



 
 

Part 2: Exercise 

 

 

In this lab, you’ll be writing a program to read in and process a file of 
information. The information must be read in and printed out in a specific way.  
 
 
 
 

 

Tasks 

 

 

Starting: 
o Copy the dogData.txt input file from Prof. Neary’s pub directory 

o Open the file and examine the contents and the way they’re formatted 

  

Programming: 

o Open the file and read in the contents 

o Ask the user what the “minimum stay time” should be
 

o Determine whether a dog should be brought to the event
 

o Write the information of eligible dogs to a new file, called “dogList.txt” 
 

 

General: 

o Run and test your code as needed 

o Show your work to your TA 

 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

CMSC 201 – Computer Science I for Majors Page 7 



 
 

Part 3A: Downloading the Input File 

 

 

First, create the lab12 folder using the mkdir command -- the folder needs to 

be inside your Labs folder as well. 

 

Next, copy a file into your lab12 folder using the cp command. 

 

cp /afs/umbc.edu/users/m/n/mneary1/pub/cs201/dogData.txt . 

 

This will copy the file dogData.txt from Prof. Neary’s public folder into your 

current folder.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

CMSC 201 – Computer Science I for Majors Page 8 



 
 

Part 3B: Writing the Program 

 

 

This program reads in data from the “dogData.txt” file, which contains (in this 
order, and separated only by commas):  

Dog’s name 

Dog’s breed 

Dog’s gender 

Dog’s age  

Length of dog’s stay at the shelter 

 

Your program will need to read this information in, determine whether the dog 
meets the “minimum stay time” provided by the user, and write only the eligible 
dogs’ information to a new file (called “dogList.txt”).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

CMSC 201 – Computer Science I for Majors Page 9 



 
 

Part 3C: Sample Output 
 

Here is some sample output, with the user input in blue.  

(Yours does not have to match this word for word, but it should be similar.) 
(We’ve used the “cat” command to “concatenate” the output 

 

file’s text to the terminal, instead of opening it in emacs.)  

 

linux3[144]% python3 adoptions.py 

Dogs are brought to adoption events based on time at the 

shelter. 

Please enter the minimum stay time for the dogs: 30 

 

linux3[145]% cat dogList.txt 

Laika,unknown,female,3,50 

Goddard,robot,male,4,61 

 

linux3[146]% python3 adoptions.py 

Dogs are brought to adoption events based on time at the 

shelter. 

Please enter the minimum stay time for the dogs: 7 

 

linux3[147]% cat dogList.txt 

Laika,unknown,female,3,50 

Goddard,robot,male,4,61 

Togo,Siberian Husky,male,16,8 

Balto,Siberian Husky,male,14,9 

Hachiko,Akita Inu,male,11,9 

Buddy,Labrador Retriever,male,4,22 

Bo,Portuguese Water Dog,male,9,11 

Argos,Kritikos Lagonikos,male,21,7 

Lady,Pomeranian,female,5,20 

Nipper,Terrier,male,11,17 

 

linux3[148]% 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CMSC 201 – Computer Science I for Majors Page 10 



 
 

Part 4: Completing Your Lab 

 

 

Since this is an in-person lab, you do not need to use the submit command to 

complete your lab. Instead, raise your hand to let your TA know that you are 
finished. 

 

They will come over and check your work – they may ask you to run your 
program for them, and they may also want to see your code. Once they’ve 
checked your work, they’ll give you a score for the lab, and you are free to 
leave. 
 

 
 
 

 

Starting: 
o Copy the dogData.txt input file from Prof. Neary’s pub directory 

o Open the file and examine the contents and the way they’re formatted 

  

Programming: 

o Open the file and read in the contents 

o Ask the user what the “minimum stay time” should be
 

o Determine whether a dog should be brought to the event
 

o Write the information of eligible dogs to a new file, called “dogList.txt” 
 

 

General: 

o Run and test your code as needed 

o Show your work to your TA 

 
 
 

 

IMPORTANT: If you leave the lab without the TA checking 
your work, you will receive a zero for this week’s lab. Make 
sure you have been given a grade before you leave!  
 
 
 
 
 
 
 
 
 
 

CMSC 201 – Computer Science I for Majors Page 11 


